← 返回主页面

第一届云师数学前沿讲习班

2024年7月25日 – 7月31日

云南师范大学数学学院, 昆明, 中国

关于会议

本次会议旨在促进数学各领域研究者之间的交流与合作,主题涵盖但不限于表示论、微分几何、调和分析、偏微分方程、数论及数学物理等方向。

课程信息

本次会议包括以下短期课程:

刘宇航(西交利物浦大学)

刘宇航,现任西交利物浦大学数学系助理教授,2019-2022年北京大学博士后,2014-2019年宾夕法尼亚大学数学博士。研究方向:微分几何,几何拓扑。对正曲率流形、李群理论与群作用、闭测地线等相关问题。曾获第一届、第二届阿里巴巴全球数学竞赛优秀奖。
Theory of curves and surfaces and Gauss-Bonnet theorem
In this talk, I will survey the definition of curves and surfaces in Euclidean spaces. I will review the concepts of Frenet frame, curvature and torsion of curves in 3-space, and then move on to some classical theorems on curves, including Hopf vertex theorem, rotation number theorem and Fary-Milnor theorem. On the surface part, I will give intuitive definitions of principal curvatures and Gauss curvature and introduce the Gauss-Bonnet theorem as well as some of its applications.

夏铭辰(法国Sorbonne大学 / Chalmers大学)

夏铭辰,法国Sorbonne大学博士后。2022年于瑞典Chalmers大学获得博士学位。主要研究领域为多重位势理论与复几何。在Geom.&Topol.,Crelles等刊物上发表论文十余篇。
Introduction to differential geometry
This course provides a brief introduction to the basic concepts in differential geometry and Riemannian geometry. The study of curved spaces naturally arises in both mathematics and physics. A curved space that locally resembles Euclidean space is known as a manifold. In lower dimensions, manifolds correspond to the familiar notions of curves and surfaces. The study of manifolds can be divided into four main topics: topology, geometry, analysis and physics. The first four lectures will cover the notions of manifolds and Riemannian metrics. The last lecture will include discussions on the Riemann curvature tensor. Participants are expected to have a basic knowledge of calculus and linear algebra.
Lecture 1: The notion of manifolds
Lecture 2: The tangent bundle and the cotangent bundle
Lecture 3: Submanifolds
Lecture 4: Differential forms
Lecture 5: Riemannian manifolds

张鸿伟(德国Paderborn大学)

张鸿伟,德国Paderborn大学博士后。2020年于法国Orléans大学获得博士学位。主要研究领域为对称空间及局部对称空间上的调和分析及应用。在Amer.J.Math.、J.Funct.Anal.、J.Geom.Anal.、J.Differ.Equ.等刊物上发表论文十余篇。
Schrödinger equation: from Euclidean space to hyperbolic space
This lecture begins by recalling the study of the Schrödinger equation in the Euclidean setting. We will explain how the dispersive property and the duality argument can be used to establish the Strichartz inequality, and give its applications to global well-posedness and scattering for the nonlinear problem. Next, we review the basic structure of hyperbolic spaces; we will consider those of rank one mainly formed by semisimple Lie groups and explain how to use harmonic analysis (spherical functions, Harish-Chandra transform, Kunze-Stein phenomenon, etc.) in this context. Using these tools, we derive the pointwise kernel estimates in hyperbolic spaces and then we derive different properties of the dispersion and the Strichartz inequality. Some generalizations to so-called non-compact symmetric spaces of higher rank will be discussed at the end.

报告

以下为本次会议的邀请报告:

归斌(清华大学)

泛函分析数学史

Alan Hou(Brandeis University)

A Brief Introduction to Tate's Thesis

Contact

如有问题,请联系 yangzhipeng326@163.com

Last updated: June 2025